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ABSTRACT
‘H.p ,vyt hovr
In a cylindrical region we considerﬁglectronagnetic fields independent of
the axial coordinate: controlling the time evolution of such fields by means
of boundary currents, likewise independent of the axial direction, is
equivalent to controlling, simultaneously, two wave equations; one with

boundary control of Dirichlet type, the other of Neumann type. In—Ihis paper

Glwe providesp preliminary study of control problems of this type and indicate

what is necessary for extensions of our work. C::_~\\\\\\\\\~—\\\§§‘ﬁ~\\\
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SIGNIFICANCE AND EXPLANATION

This paper concerns the controllability of the Maxwell electromagnetic
equations in a cylindrical spatial region by means of controlling currents
cauged to flow on the boundary of the region. Here controllability refers to
the ability to transfer from electric and magnetic fields, given at the
initial instant, to corresponding fields prescribed at a later instant.

Studies of this type are significant in relation to wave guides, EM-pulse
devices, radar non-relective (stealth) aircraft, controlled thermonuclear

fusion and many other important applicﬁtions.
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THE DIRICHLET~-NEUMANN BOUNDARY CONTROL PROBLEM ASSOCIATED
WITH MAXWELL'S EQUATIONS IN A CYLINDRICAL REGION

D. L. Russell F
1. BACKGROUND.
In this paper we consider a region & ¢ R3. not necegsarily bounded, having piecewise
smooth boundary T and almost everywhere uniguely defined unit exterior normal vector *
V= Vix,y,2), (x,y,z) e . It is assumed that the region 2 4is occupied by a medium
having constant electrical permitivity € and constant magnetic permeability u. We have
then, in £, the paired electric and magnetic fields
E = Ex,y,2,t) , b
fi= ﬁ(x,y,z,t) '
having finite enerqgy
) =% [[f ed1? + pitndrav , (1.1)
Q

where | 1 denotes the usuval Fuclidean norm in R3. As is well known ((4], [9)), £ ana

+
H gatisfy, in 8, Maxwell's equations

3t

>
curl H = ¢ 3 ' (1.2)
>
> 3H
curl E = - 3= , (1.3)
aviE=p, (1.4)
avii=o0, (1.5)

where p = p(x,y,z,t) is the electrical charge density in I - which is zero throughout
this paper. (That equation (1.5) might eventually have to be modified to account for

magnetic monopoles will trouble us not at all here!)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and supported
in part hy the United States Air Force Office of Scientific Research under Grant
APOSR-79-0018
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Control problems associated with Maxwell's eguations have been of interest primarily
in connection with nuclear fusion applications - in which case p is not identically equal
to zero and the Maxwell equations are coupled with the dynamical equations governing the
plasma evolution. In this connection we cite the work of P. K. C. Wang [29]), [30), [31]).
The point of view which we take here is that we cannot hope to treat these more complicated
problems until we have a firmer grasp on the control theory of Maxwell's system in its own
right. In this direction some work on controllability with control influence distributed
throughout 2 has been carried out by G. Chen [2], [3]. We are primarily concerned here
with the possibility of influencing the evolution of the fields £ ana % by means of an
externally determined current S(x,y,:,t) flowing tangentially in I so that

3(x,y,z,t)'3(x,y,2) =0, (1.6)
for (x,y,z) € T wvhere 3(x.y,z) is defined. We will assume that the normal component of
£ vanishes outside @ and that no charge is permitted to accumulate on I'. Then we have
the boundary conditions (see e.g. [4], [28])
* eE(x,y,z,t)'g(x,y,z) =0 (1.7)
uﬁt(x,y,z,t) = 3(x,y,z) x 3(x,y,z,t) (1.8)
for (x,y,z) € T such that S(x.y,z) is well-defined. Here, and subsequently, the
subscript T refers to the component of the vector in question which is tangential to T.
Similarly, the subscript Vv will denote the normal component (thus (1.7) is the same as
ﬁv = 0). writing
$= Ev + f‘ = §T on T,
R S 1
¥a- 3v + 31 = 31 on T,

we see that (1.8) becomes uﬁt =3 x 31, so that ﬁt is a vector tangential to T and

perpendicular to 3 31-
The state space in which we study solutions of the above system will be denoted by
H‘ d(0)1 it is a closed subspace of the space H'(n) of square integrable six-
’

dimensional fields (i(x,y,z,t), ﬁ(x,y,z,t)) with the inner product and norm
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<«ELRid,E) e ]éf (ef of, + uil el av

vd 82 =« (1.9)
Clearly Hy(f) is a real Hilbert space with this inner product. Where a complex space is

required, we employ conjugatior as usual. The state space H () is the closed span in

EB,d
H‘(ﬂ) of those continuously differentiable fields (i(x,y,z,t), ﬁ(x,y,z.t)) for which

JE aEy 3E

> X 2z
di‘!!'w"’v#r‘(’,

H H
3 3 v 3H

> X . z‘
div H H—-W'QF 0.

»> »
1r £,% and E,,H  are two smooth solution pairs for (1.2)-(1.5), (1.7), (1.8),

the first corresponding to 20 on I, we see eagily that
d 3 x =
S <o B E

9 2
) Iéj (C[E°' 521 * 3?2 * 31] + "[ﬁo' 5?1 3?2 * ﬁ1])dv

(using (1.2), (1.3)) =

fgf (Eo- curl ﬁ1 - curl §o° 51 + curl ﬁoo §1 - ﬁo- curl ii)dv

(using div (E x H) = curl E-f-%+ curl ﬁ!

- Ié[ faiv(€) x ﬁ,) + aiv(E, x ﬁo)ldv

- Jf By x B+ B x ) - vas = (using (1.7))
r

- {I (EOT X ﬁ1‘ * Bor X ﬁw * E‘t X ﬁo: * E11 X ﬁOv) ¢ vas
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= (using (1.8) and noting that J 2 0 for fo, ﬁo)
- - {_I (Fy. e Dras . (1.10) .

If we go through the same computation with ﬁo,ﬁ f1,§1 both replaced by the same E,ﬁ

ol
satisfying (1.2)=-(1.5), (1.7), (1.8) we find that

%.-{] (txﬁ)-sd.--{lffr' Jas . (1.11)

For ¥=o0 generalized solutions of (1.2)-(1.5), (1.7}, (1.8) can be discussed in the
general context of partial differential equations and strongly continuous semigroups. The

generator

A(!,ﬁ) - (% curl ﬁ, - % curl i) (1.12)

with domain consisting of & 1n the sobolev space H;'d(ﬂ)('ﬂt d(0) n atan having
1 4

zero divergence and satisfying (cf. (1.7), (1.8))
£ =0, H) =0, (1.13)
ol =0 B

is antisymmetric and generates a group of isometries in Hl,d(“" (See (32]), (33], (34]
for related work.) Sufficient conditions on hj so that solutions of the inhomogeneous
system (1.2)-(1.5), (1.7), (1.8) lie in H"d(ﬂ) and are strongly continuous there may be
obtained much as in (18], [19] but it is not easy to specify necessary and sufficient
conditions. Indeed, this is already difficult for the much simpler, but related, wave

equation

@
N
<
@
[
<
L
N
<
@

u:———-—{-_—#_—

with boundary forcing terms. We will make some commants related to this in Section 6.




2. CONTROL PROBLEMS IN A CYLINDRICAL REGION

The main point in this paper is to study the question of controllability of the
electromagnetic field i.ﬁ by means of the boundary current 3~ 31- By controllability
we mean the possibility of transferring an initial field !(x,y,z,o), ﬁ(x,y,z,O) e

ﬂ"d(ﬂ), given at time t = 0, to a prescribed terminal field E(x,y,z,T),

ﬁ(x.y,z.r) e H"d(ﬂ), specified at t =T > 0, by means of a suitable control current
3(x,y,z,t) defined for (x,y,z) eTl, t e [0,T]. Because the homogeneous Maxwell
equations correspond to a group of isometries in u"d(a), it is enough to consider the
special case wherein

E(x,y,2,0) 5 0, (2.1)

fi(x,y,z,0) = 0 . (2.2)
For a given space, J, of admigssible control currents 3(x,y,z,t) = 3t(x,y,z,t) defined

on T x [0,T] we define the reachable set R(T,J) to be the subspace of H )

E,d
consisting of states reachable from the zero initial state using controls Yea.
Following earlier definitions ((8], [26]), our system is approximately controllable in

time T if R(T,J) is dense in H, ,(R) and exactly controllable in time T if
’

R(T,J)} = H"d(Q) {or some precisely designated subspace of Hz,d(a))‘

At this writing we are not able to discuss the general three dimensional problem
wherein the vector fields 3 and [ are unrestricted, except as stipulated heretofore,
and @ has a general geometry. We hope in later work to consider at least some three
dimensional cases which arise for special domains §l. But for now we must content
ourselves with the case in which f 1is a cylinder:

Q=Rx (~»,® = {(x,y,2)|(x,y) € R C Rz, z real)
where R 1is an open connected region in r2 with piecewise smooth boundary B. Thus
9 = R x (-»,®) = B x (~=,») ,
Even here we can give results only for special two dimensional regions R.
The two dimensional problem in the cylinder Q = R x (-=»,») occurs when we confine

attention to fields

+» > s »
E = B(x,y,t), H = H(x,y,t)

-5~
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which do not depend on the coordinate z corresponding to the axial, or longitudinal,

direction of the cylinder. (Note that this is not at all the same thing as requiring
that E , H,, the field components in the z direction, should be zero.) we
correspondingly consider only contreol currents
5a- 3(x.y.t) ‘
which do not depend upon =z.
Of course the energy X in 2 is infinite under the above circumstances if f, i
are not identically zero. We redefine E to be the energy per unit length of cylinder:

Bt) =% [ (ertf(x,y, 0202 + utlicx,y, )17 Jaxdy . (2.3)
R

The space H"d(ﬂ) is now replaced by “l,d(l)‘ Because
3Bz(x,y,t) o 3Hz(x,y,t) .
3z - dz -
we have
. azx JdE . aux 351
avEe gL, awvH e T et (2.4) '
The curl expressicns simplify to
JE JE, ? E
B[l -2, &L X :
curl E (ay ¢ s;" X Ay .
M 3H bl 9H
curl H (§;~, Ix ' Ix Iy ) .
so that the equations (1.2), (1.3) become
JE M M E
z x
(1) ﬁst—' W‘ {iv) llat 3y
JE aH M JdE
Y.._ 2 d - —Z
(i) e 3= i (v) 3t % (2.5)
J3E 9H H aH 3E JE
2. _¥. X L SIS A,
(i11) € < = " (vi) u 3t = "
-6~ .
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It is clear from (2.5), (i{)-(vi), that if E(x,y.oll ﬁ(x;y.ﬂ) are given, then the

subsequent evolution of E (x,y,t), H,(x,y,t) determine all of the other components. As
for these components themselves, differentiating (2.5) (iii) and (2.5) (vi) with respect

to t and then substituting (2.5) (iv), (v) and (2.5) (i), (ii) into the respectively

E resulting expressions, we obtain the familiar wave equations
1 azzz s, %,
ue = p) + 5 ¢ (2.6)
t Ix dy
aznz 3% aznz
ue 5 = 5 + 5 (2.7)
at Ix 9y

valid for (x,y) € R, t € [0,»), provided E,, H have enough derivatives, or provided

I

the equations are interpreted in the distributional sense. Assuming the initial states

+*
E(X,Y'O), H(x,y,0) are divergence-free, we compute (cf. (2.4))

s E, 3E
e3p G * 5;1) = (using (2.5) (1), (ii))

u a%n
“l3ay ~ ) " °

and similarly

3 (M, My
v Gt =0

and we conclude that the fields remain divergence~free for all time.

Suppose, then, that divergence-free initial states E(x.y.O), ﬁ(x,y,o) are given.
J3E

Then E,(x,y,0), H,(x,y,0) are known and (2.5) (iii), (vi) determine 3;5 (x,y,0) and
o
5;5 (x,y,0). If (2.6), (2.7) are then solved with these initial conditions, and

appropriate boundary conditions, the complete solution of Maxwell's equations (2.5)

(1)-(vi), can be obtained by integrating (2.5) (i), (ii), (iv), (v). Thus it is enouch to
work with (2.6), (2.7), and it should be noted that the divergence condition does not have

any bearing on €, H,s it can be ignored henceforth.

-7~ A b
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Figure 1. The Region R

It is important to recast the boundary conditions (1.7), (1.8) so that they provide
boundary conditions for (2.6), (2.7). We ask the reader to consult Figure 1, where the
region R with boundary 3R = B is shown. At a point (x,y) € B we let b= Vix,y)
denote the unit exterior normal to B and we let & = 3(x,y) denote the positively
oriented unit tangent vector to B there. With E. the unit vector in the positive =z
direction, 3. 3, t form a positively oriented orthogonal triple of unit vectors. Given
an arbitrary vector w we can decompose it as

v = (e oW (=)D

> 2 2 2 2
+ + .
fwl® = w, b v

The tangential part of ﬁ, which we have designated as ﬁt' may now be represented as
»*
ﬁT =nt+nd (2.8)
and the current J = 31, may likewise be represented as
»>
K . " J:z +33 .

Then




B i e el

T A T U

» > +» * >
3 x ¥ v x 31 v x (sz + Joc) -Jzo + Jof (2.9)
Combining (1.8), (2.8), (2.9) we see that on B
Hz(x,y,t) = Ju(x,y,t) . (2.10)
Holx,y,t) = =3 (x,y,t) . (2.11)
> >
Represent V, 0 as
> *
= +
3 vxt v A (2.12)
+* > +
= + = - + . .
5 oxE o f vyE v h (2.13)
Then compute
asz azz aEz
—=——V +—V = . .
™ ™ vx 3y v (using (1.3) , (2.13)
QHY 3Hx 3H°
= i + — = —
Va9 TV I % TV 3t
BJz
= (using (2.11)) = - T (2.14)

The equations (2.10), (2.14) provide the needed boundary conditions for (2.6), (2.7)

respectively. For H, we have the Dirichlet-type boundary condition (2.10) while for

E, we have the Neumann-type boundary condition (2.14). 1If we let
a3

ﬁ(x,y,t) Ty (x,y.t) ,

and differentiate (2.10), we have the more symmetric form

aHz aEz
FTe (x,y,t) = Uo(x,y,t), P -Uz(x,y,t), (x,y) € B . (2.15)

We complete this section by discussing the question of expression of the energy per
unit cylinder length, (2.3), solely in terms of H, and E,.

We consider the equations (2.6), (2.7) with homogeneous houndary conditions

auz azz
T (x,y,t) = 0, v (x,y,t) =0, (x,y)eB.

-9~
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We use the aymbol A for the Laplacian:

2 9
a5
Ix ay

Initially we take M., E, to lie in the Sobolev space HZ(R). This space must be
decomposed in order to attach a meaning to A~
The boundary condition for R, may be rewritten as

Hpix,y,t) = hix,y), (x,y)eB,
where, by the trace theorem, h @€ H3/2(!). Then we can write

Hy(x,y,t) = B_(x,9,8) + §_(x,y)
where ﬁz(x,y) is the solution of

8H, (x,y) = 0, H_(x,y) =hnlxy), (x,y)eB
and
ﬁz(x,y,t) =0, (x,y)epn.

The inverse Laplacian a™? is well defined on the functions ﬁz’ For E, we may write

E l{x,y,t) = Ez(x,y,t) + Ez(t)

where Ez, as indicated, is constant with respect to (x,y) € R and
I E (x,y,t)ds = 0 .
B Z

- -
It is well known that A”' is well defined on the functions E,.
We proceed first on the assumption that
Hy(x,y,t) = H (6,y,t), E(x,y,t) = E (Xy,8) .

we form new solutions of (2.6), (2.7) by setting

an IF
F Mg T B f3p "o
i
%
i -1 agz -1 3Hz
. G, = €8 e Fp=uw 3

using the equations (2.5) with & replacing ﬁ, 4

We then determine Gx' G,, Fx' F

b4 Yy’
replacing ﬁ. so that 3 and 6 satisfy Maxwell's equations:

-10-




e et anbar A

a8

g

»
= -curl F ,

oF 2
€ T = curl G .

It will then be found that

i = curl ;, ﬁ = curl ¢.

Following this, (2.3) can be written as

B(e) =% [[ tetcurt #12 + yicurl &1¥)axay
R

3F_ 2 F 2 F wr_2
el elGE) + GH  GE 5D )

dy Ay
% 2 6, 2 3G 3G 2
+ul(58) ¢ (-3;—) + (355 - 5—;—) Jaxay (2.16)

Then from (2.16) we have

P 2 oF_ 2 G_ 2
e =Yl ) ¢ 7) ¢ () )
aG_ 2 G_ 2 3P, 2
(5 + G5 + (e 5 1) axey
an 2 aPz 2 2
=’/2£J' elGx) + (5-;} + (2)7]
G_ 2 an 2 2
sul(58) ¢ (5D ¢ ) laxey

Now consider the quadratic form (for E, = Ez)

-11-
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e gt b ot o« e -

x e % 2%
(g2 7 gt = (0 5 =7 )
2t t
azcz
i 3 = (since G, satisfies the wave equation U€ —7= = AG
at

and the boundary conditions G,(x,y,t) = 0, (x,y) € B) =
aG_ 2 3G, 2
\J - z z
7 8o = i) + ) -
ue ve
Similarly
E1] oH ar_ 2 2
z -1 zy o 1 z z
(37 -0 37) o (7)) + (59 )
from which it follows that
E oK 9K EL|
2 -1 -1 2
‘ Be) =% [ {wo’[(575 -a7 577) + (57 -0 5o)] v eEp” 4 u(Hz)z}dxdy .
R
1 | finite states - a fact which will be very careful later.

F It is necessary to modify this expression for general B,y Hy. We begin with

E (x,y,t) = E (v) .

: z aE,
The only possible solutions of the wave equation (2.6) satisfying 5;‘|B = 0 and having
this form are

!z(x,y,t) = ey + egt

et s

where e, and ey are constants. (Such solutions are consistent with a constant boundary

current J for which Jc £ 0.) The corresponding E,, !y' H, are zero but

3!z 9H 3Hx
RS ik e

herer wr s

It is not posaible to express this quantity in terms of E, itself or H,. It is better

1 aE
to leave it in the form € EEE' Solutions of Maxwell's equations with E, having this
9E
form have energy expressible as a quadratic form in E, and 525-

-12~ .
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Next we consider H, = E: as described earlier. Such a solution is consistent with a

boundary current for which Jt = 0, constant with respect to time but possibly varying

with (x,y) € B. We may take Hy, Hy, E, all zero. However,

J3E b1 k1 4 3H
PR . d o E
€ 3% y ' €% x

80 we may not assume that E, and !y are equal to zero. The energy associated with

solutions of this type is expressible in terms of
H_ 2 9H_ 2
z z

] [(37') + (3y—) Jaxay

R
if integration with respect to t is permitted. In the sequel we will not explicitly
consider the timewise linear electric fields satisfying the above equations.

We see then that a norm involving only E, and H, and compatible with the energy

(2.3) may be expressed as

- - -

9E 9
z

-1 3
7o) * Go

2 225, -1 3, - 2 A 2
Ve H 1" = £I (we) (3= -8 P 0T 5] v et v

. 2 3, 2 M 2 ¥, 2
o E,)" + o (5=) +0y(57) + a,(b-;-) ] axdy (2.17)

where PgsP:9y:0, are positive numbers. It will be seen that this is a weaker norm than
the one associated with a pair of wave equations, viz.:

2,

vt = ] { %®_2 M 2 2
RIS ve[(zz7) + (3g7) 1+ 09E 1% + 1vm 1 %faxay (2.18)

9E_ 3H
We will denote the Hilhert space of states E,, H,, 522. 5:5 lying in H‘(R), H‘(R),

Lz(R), Lz(R), respectively, by H. This space will be very convenient for use in the
remainder of this paper. In some cases we will add boundary conditions to the
specification of H, the space with norm 1| |, without changing the symbol, to correspond

to an agreed specification of the states in H Dby similar boundary conditions.

-13~
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3. SOME CONTROL CONFPIGURATIONS

We describe here two posaible realizations of the control problem which we have posed
and indicate why we have chosen the mathematically more interesting (i.e., more difficult)
one to work with in this paper, ' '

Let us assume that [ = 3Q = B x (-=,®) L—/
is covered by one or wmore layers of conducting
bars, arranged in rows as shown in Figure 3,1. ‘
In the case of a single layer of conducting ~a<
bars shown in Figure 2(b), the bars are arranged - e~ ,1 
so that they make an angle 8, 0 < (8] < %. K\\\---_-—;———,;/)
with the vector 3 (cf. Figure 1), while in :

the double layer case (Figure 2(a)) they are Figure 2(a). Double Layer Control

arranged so that the bars in the second layer

make an angle *l 0 < '*l < ';"l * * 9, with

the vector 3. The current in any row of bars
parallel to the z-axis is independent of 2z:

i.e., constant for all bars in that row. As

we consider successively smaller bars we

obtain, as an idealization, the boundary

current vector
Figure 2(b). Single Layer Control

s(x,y,t) = J(x,y.,t)(cos 83 + sin (T3] (3.1)
in the single layer case, J(x,y,t) denoting the current strength with the sign determined
so that J positive yields a positive current component in the 3 direction. The
corresponding formula in the double layer case is

Fix,y,t) = 3 (x,y,t)(cos 85 + sin 8F)
+ Jz(x,y,t)(cos o& + sin OE) . (3.2)
The current components are, in the single layer case
Jo(x,y,t) = J(x,y,t)cos 8 ,

Jz(x,y,t) = J(x,y,t)sin 0 ,

-14-
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and in the double layer case,

Jq(x,y,t) cos 8 cos ¥ Jaix,y,t)
- (3.3)
I, (x,y,t) sin 0 sin ¢y Jp(x,y,t) .
The determinant of the matrix in (3.3) is sin (p ~0) # 0 if ¢ # 0 4in the range
«

0 ¢ }o] « 3¢ 0 < |y| < %. Thus in the double layer case J° and J, are independent
it Jy and J, are independent while in the single layer case Ja and J, are fixed
non-zero multiples of each other.

The double layer case is easily disposed of in the light of earlier work on boundary

control of the wave equation., Referring back to (2.10), (2.11) we now have, for

(x,y) €B =23R, t e [0=),

H
3;5 (x,y,t) = Ua(x,y,t) = cos 6 ut(lelt) + cos ¢ uz(x,y,t) »

) 4
535 (x,y,t) = -Uz(x,y,t) = -gin 6 u1(x,y,t) + cos uz(x,y,t) ’

3J1 332
u1(x,y,t) il (x,y.t), uz(x,y,t) al ra (x,y,t) .

Since Uy and U, are independent if uy and u; are, the control problem splits into
two uncoupled wave-equation problems, one for E, and one for H,. These have been
discussed thoroughly in (21, (3], [15), [16), [22], [23], [25] with affirmative
controllability results for various control configurations and will not concern us further
here.
In the remainder of this paper we study the single layer case. If we let
u(x,y,t) = %% (x,y,t) (3.4)

we now have the wave equations (2.6), (2.7) for E,, H, and the boundary conditions

PPN

a“z aJ ]
Freg {x,y,t) = cos 8 3t (x,y,t) = a ulx,y,t) , (3.5) }

£ LT




)4
'—;! (x,y,t) = -gin O 'g% (x,y.t) § 8 ulx,y,t) .

The control problems for B, and H, are now coupled hecause the single control
function, wu(x,y,t), appears in the boundary conditions for both E; and H,) we have to
contol both systems simultanecusly using the same control function.

If we rely on experience in a single space dimension, which has proved generally quite
helpful in the control theory of a single wave equation, we are led to belisve that systems
like (2.6), (2.7), (3.5), (3.6) may, in fact, be controllsble. Replacing u(x,y,t) by
ugl{t), uq(t) and taking 0 € x € 1, the one dimensional equations are, using variables

Ve W,

£ 0.0) =auyrer, Foare) =augier

W (0,6) = ~Buy(t), X (1,e) = Bu,(t) (3.10)
= 0 x 1

(note that - :—'—; corresponds to the axterior normal derivative at 0]. Letting

we find that

(3.13)

Differentiating (3.11) with respect to t and using (3.8) we have

-16~-
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2v 1 av

_‘.—_a B o — - ! .

Sw ARt UCES LHER (3.15)
132—"(1c)--”—;(1e)-5 '(e) (3.16
P axz 1] P ax ’ P “‘ ] . )

while differentiation of (3.12) along with (3.10) yields

2 ~
2
L2 (0,0 = 32 (0,0) = -Bujte) , (3.17)
3-2—"-(1e)~';n:)-a'(:) 18
Atdx ' x ot ¢ (3.18)

Combining (3.13) with (3.14), (3.15), (3.16), (3.17), (3.18), we see that

BV + % v, Bv - % ¥ both satisfy the vave equation and

(85 + 23)(0,6) =0, = (85 + S T)(1,e) = 288 Gipyy
] x (-] [ 1

(s

(65 - 23)c0,0) = Z—:Eua(e), -:; 5 -2Hae 0.

1)

Thus the control problems for BV + % ¥ and Bv - s v are both of Neumann type and are
uncoupled. Affirmative controllability results are then available from [20), (211, (24].
If we replace ug(t) (or wu4(t) by 0 in the above, then v -%a (or BV + E w)
will become completely uncontrollable and our original system muat therefore be
uncontrollable. This result at first seems to predict failure for the enterprize which we

now undertake for the two dimensional case.
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4. APPROXIMATE BOUNDARY CONTROLLABILITY
By a simple change of scale in the t variable, and renaming of the independent

variables, we may assume that the system of intereat is

2 2 2
? ? 9
_g - _L; + —§ . 4.1)
at Ix dy t>0,
(x,y) € R,
By _ P, '
b e {4.2)
it Ix oy
with boundary conditions
v
* (x,y.t) = aulx,y,t) (4.3)
t>0,
(x,y) € B =3Q
%-'f'; (x,y,t) = Bulx,y,t) (4.4)

We will not, in general, assume that u(x,y,t) can be selected at will for all values of
(x,y,t) shown. More on this later.
Because the system {s time reversible, it is sufficient to analyze controllability in

terms of control from the zero initial state

vix,y,0) = -g-t"l (x,y.0) = 0, (4.5)
(x,y) € R,
wix,y,0) = %{'— (x,y,0) =0, (4.6)
to a final state
v
vix,y,T) = vo(x,y), 5: (x,y,T) = v1(x,y) (4.7)
(x,y) €R .
w
wix,y,T) = wo(x,y), 3t (%,y,T) = w'(x,y) (4.8)
-18~




We have noted in Section 2 that the | I- finite states are dense in the | |- finite
states. In the present context this means that we can work with the Hilbert space of

aw
states v, g%. w, 5; with the inner product

o e e aS - a
(O 0% STNCR A8 D)

i . 3vav . 3w dw _ 3v OV . 3w 9w _ 3v 3V . Iw Iw

- RIS 1 R o A TR R TR TR R A L TR

a space which we will refer to as H. The norm is | ¢ (cf. (2.18)) with ue = 1. As we
have indicated, this is a dense subspace of H, the Hilbert space obtained by use of the
norm & 1 (cf. (2.17)).

The final states (4.7), (4.8) are not quite arbitrary in ﬁ if the control u is
restricted so that its support is contained in a proper relatively closed subset B,C B.
Since the condition

v

3% (x,y,t) = a u(x,y,t), (x,y) eB
applies, we may as well adjoin the additional condition

vo(x,y) =0, (x,y)e€B-~ By 2 By . (4.10)
The trace theorem ({1}, [19]) assures us that this describes a closed subspace of ﬁ,

which we will call H,- The only restriction on H1 is (4.10); vy 1is permitted to have

arbitrary values in H'/z(l1) and wg, wy are unrestricted in H'(l). Ho(l) = Lz(l),
respectively.

let U be a given space of admissible control functions, about which we will shortly
have more to say. For each control u € U we assume the existence of a unique solution

Vgr W, of (4.1)-(4.6) for t > 0, (x,y) € R. Very general sufficient conditions for this
to be the case are given in {(19]. We define the reachable set at time T, R(U,T), to be
v dw

u
the set of all final states vu(x,y,T), 5;! (x,y,T), wu(x,y,T), S;‘ (x,y,T) which may be

realized in this way. The set R(U,T) is a suhspace of R' if U is a linear space,

which we will assume, and our system is approximately controllable in time T if R(U,T)

is densge in H1 (then R{U,T)} is also dense in H because 1 | is a weaker norm than

Pt and H is dense in H). Evidently R(U,T) is dense in H1 just in case, given an

1

-19-




arbitrary state (;0';1';0';1) in 4,

av a .
{((v =iy, -a-‘—“ (¥, T, w (%,y,T), -a-t—"- (.9, TV )1V, Wi W) =0,

ueu) = (V¥ w0 =0. (a.11)
Let ;(x.y.t). ;(xoyut) be the unique solution of (4.1), (4.2) satisfying the terminal

conditions at time T:

~ ~

~ ~ ? ~ o~ ~ 3 ~
vix,y,T) = Vor 3{ (x,y,T) = Ve wix,y,T) = Vo 5% (x,y,T) = Wy (4.12)

and the homogeneous boundary conditions

a- (x,y,t) =0, (4.13)
(x,y) eB, ¢t >0,

2 (x,y,t) =0, (4.14)

Computing the quantity
v ow
a
E‘: ((v“(x,y,t), Tt:—u (x,y,.t), '“(XUYIt’I 'a't_"l (lelt,) 1

Foxoyatds 3 xoyit), Snyet), 32 xoy,e)))

using familiar duality theorems involving the laplacian and integrating from 0 to T

(see [22]), [23], (26] for details in the case of a single wave equation) we see that

v dw -~ o~ o~ o~
((vu(x,y,T). 3;3 (x,y,T), w“(x,y,T), 333 (x,y.T))t (vo.v1,w0.w1))

T ~ v ~ v
- I j [%{' (x,y,t) 5"',‘“' (x,y,t) + %1\”‘ (x,¥,t) ’5?\'1‘ (x,y,t)
0B

™ a"u aw 3w“
+ Ty (x,y,t) v (x,y,t) + v (x,¥.t) e (x,y,t)]dsdt . (4.15)

Then using the boundary conditions (4.3), (4.4), (4.13), (4.14) we see that the above

=20~




e i

G ket e a dens o

reduces to

~

T ~
[ | [a %! (xoyst) + 8 2 (x,y,t) Julx,y, t)dsde .

v t

If, as discussed above, we suppose that B has the disjoint decomposition

‘-‘OU“"

with By relatively open in B, and that u(x,y,t) £ 0, (x,y) € By while on By u is
unrestricted save for the specification of the admissible space (e.g., we might take
2
U= C(" x IO,T]), U=1 (.1 x [oIT]) ' (4.17)

or any of many other possibilities), and if we suppose the first equation in (4.11) to
hold, we conclude that (4.16) vanishes for all u € U, We know from the trace theorem
([1], [19]) that the partial derivatives

3% 3% 3

at’ v’ L’ v’
reatricted to B, all lie in H1/2(l) for t € [0,T] and vary, with respect to the norm
in that space, continuously with respect to t, i.e. they lie in c(ﬂ1/2(l): [0,T]). We

suppose, as is the case for (4.17), e.g., that U includes a total subspace of the dual

space of C(ﬂ"z(l1);[0,T]). Then the fact that (4.17) is zero for all u € U implies

~

a ?r: (x,y,t) + 8 g—: (x,y,t) =0, (x,y) e By, t e fo,7] . (4.18)

We also have (cf. (4.13), (4.14))

aw

v (x,y,t) = 0, (x,y) eBy, te[0T] . (4.19)

av
3: (x,y,t) = 0,

The boundary values of v and w are therefore overspecified on B, x [0,T]. The proof
of approximate controllability, where it can be carried through, depends upon being able to
use this overspecification to show that

V(x,y,t) 2 0, wix,y,t) 20, (x,y) €R, te (0,7,
and therefore to conclude that the implication (4.11) is indeed valid so that R(U,T) is

dense in H1 and hence in H. We carry this argument out for the case in which R is a

rectangle and B; is one of its sides in Section 5.

“2l=




Following the development in [6], it may be seen that our system is exactly
ot 2
controllable in R,, using the control space U=1L (l1 x [0,T]), Jjust in case

v v
t

la g2 + 8 5t > xl(?o,31,30,31)|. (4.20)

1?8, x10,71) i
for some X > 0. In general this is a very difficult result to obtain but we are able to
obtain exact controllability, by other means, for the case where R ia a disc in r2

and By = B is its boundary, a circle. This result is developed in .action 6 where it

will be seen that it is heavily dependent on certain properties of the Bessel functions.




5. THE CASE R = A RECTANGLE, B, = ONE SIDE.

The work here can be carried out for a rectangle with arbitrary dimensions, but all
essential ideas are contained in the notationally simpler case
R={({x,y)[0<x<n, 0<y<x}

to which attention is restricted henceforth. We will assume that By, the portion of the

boundary on which control is exercised, is one side of R, without loss of generality it

is the set
B, = {Ur,y)]0 <y < x} . {(5.1)
We consider then ;, w satisfying (4.1), (4.2) in R X [0,T) for some T > 0, and alsoc
satisfying boundary conditions
v 3w
roul (le:t) =0, — {x,y,t) =0, (X,y) € B=23R, te [O:T] ’ (5.2)
t v
3v 3w
a 5% (m,y,t) + 8 5% (%,y,t)
v aw
= a5 (m,y,t) +8 3t (n,y,t) =0, 0<y<n, te[0T) . (5.3)

We may assume without loss of generality, since the wave equation is time reversible
with either Dirichlet or Neumann boundary conditions, that vV and W are extended to
satisfy (4.1), (4.2) on =® < t < ®» and that the boundary conditions (5.2) hold for
(x,y) €B, te (-»,®), We may not assume that the boundary condition (5.3) is applicable
beyond [0,T), however, if controls are restricted to have support in B1 x {0,T]. Let

§ >0 and let s(t) be an arbitrary function in c”(-=,®) with support in (~§,8).

Define
vix,y,t) = [ s(t - 1)¥(x,y,7)at , (5.4)
-0
~ Ld ~
wix,y,t) = [ s(t - Dwix,y,1)d7 . (5.5)
-

Then Vv, w are solutions of the wave equations (4.1), (4.2) satisfying boundary conditions
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while

av
at

3

o (x,y,t} = 0, 25 {(x,y,£) = 0, (x,y) @B =3R, =~ (t <C<w,

3 3
a 5% {%,y,£) + B 55 (",y,t) =0, 0<Cy<w, tef(s T~8.

(5.6)

(5.7)

il RN R - T I T

Moreover, it can be shown that V, ¥ are of class C. for (x,y) €R, -® <t (®», If we
can show VvV £ 0, w £ 0 for any such choice of s, then ¥zo, wzto.,
Let us define, for (x,y) € R, =» < t < =,
v 9
¢(x,y,t) = a Tx (XeYet) * 8 3"—: (x,y,t) . (5.8)
From (S5.7) we have
$(v,y,t) =0, 0<y<n, tels T-28]. (5.9)
Since a and B are constants we have
2 2 2
3 2
Q_% = __%,+ -—%, (x,y) €R, - <t Cm, (5.10)
at Ix dy
Let us note that, since Vv satisfies the wave equation in R U B,
22 2°
v 3w
a4 — (x,y,t) +8 30 (x,y,t)
at
24 - 2+
v v 3w
a[-a? (x,y,£) + ;;3 (x,y,0)] + B 53— Cay,t) o (5.11)

Setting x = % in (5.11) and differentiating the identities in (5.6) with respect to ¢,

we see that the left hand side vanishes. Then, comparing (5.11) with (5.8)

%3 (r,y,t) = —a ?...i‘{ (x,y,t) 2 aly), 0<Cy<w, §<t<T~6, (5.12)
3y

the last identity being valid as a consequence of the first condition in (5.6).
The two conditions, (5.8) and (5.12), satisfied by ¢ at the boundary x = % enable

us to use Holmgren's uniqueness theorem (see [5] or [13], e.g.) in much the same way as it

~24-
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was used in the proof of the approximate controllability of the wave equation in [22], {23)
to see that if
T>2+ 28 (5.13)
then ¢ must be independent of t for 1 +J3 <t T-1-~8§, i{.e.
¢i(x,y,t) = ¢(x,y), (x,y) @R, 1 +8§ <t <T~-1-8§, (5.14)
Because ; and ; satisfy the wave equation in R with the homogeneous boundary

conditions (5.6), and are of class ¢® in RU B, we have c - convergent expansions

- - . o imkjt - -ukjt
vix,y,t) = v_(x,y) + E 2 (v, e + v .e )sin kx sinjy ., (5.15)
0 k=1 =1 K3 k3
. - - g e
wix,y,t) = Yo + 2 2 (wk e + w .e ]cos kx cos jy ., (5.16)
3 k3
k=1 §=21
where
S22
Vig TR T3 (5.17)
;o(x,y) is a c” function in R U B such that (cf. (4.10))
;o(x,y) =0, (x,y)eB- {(x,y)|0 < y<x} (5.18)
and ;0 is a constant. Then, from (5.8),
avo(x,y)
¢(x,y,t) ~a "
J
= Z cos kx[ 2 (akv, .8in jy + iBw _,w .cos jyle
k=1 j=1 kJ m‘kj k3
- - - -ilﬂkjt
+ 321 (akvkjsin jy - iﬂukjwkjcos jyle ] . (5.19

still c - convergent for (x,y) € RUB, -® <t < ®. Noting (5.14), we see that the

left hand side takes the form

v, (x,y) Wolxy) .
$(x,y,t) - a - " $(x,y) ~ a — s ¢(x,y) ,

1+8<t<cr-1=~-8§, (5.20)

-
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We now strengthen (5.13) to
T>4 + 28 (5.21)
and we see that the time interval in (5.14), (5.20) has length > 2, i.e.
T=-1-8§<(V+8)=T7-(2+28)>2. (5.17)
Since the functions Jrg cos kx are orthonormal on 0 €< x ¢ ¥, we conclude from (5.19),

(5.20) that for k = 1,2,3,...

- iwk t
. 3
j§1 (akvkjsln iy + ismkjwkjcos jyle
- - - -1uk t
+ I (akv, ,sin jy - 1By .w . cos jyle 3
g1k “ 3%
2 e
=2 Mxiylcos kx ax = 4 (y), 1 +8<ct<T-1-6. (5.22)
0

Classical results of Levinson and Schwartz ({17}, [27)), which have frequently been
used in control studies of this type (see, e.g., [12]), {21]), can now be used to show that
for each fixed k, the exponential functions

Y

tiw
LI . 3 =1,2,3,...,

e
together with the congtant function 1 are strongly independent in L2(I) for any
t-interval 1 of length > 2., This clearly contradicts (5.22) unless we have

#(y) 20, 0<y<w (5.23)
and

akv,

kjsln jy + 1Bukjwkjcos jy =0, 0<y<x, §=1,23,....

But then, since for each j sin jy and cos jy are independent on 0 < y < w and since

none of a, k, B, ukj are zero, we conclude that i
vkj = 0, wkj =0, k=1,2,3,.¢s, J=12,3,e00 (5.24)

Since (5.22), (5.23) show that

a -
sx,y) = Ok(y)cos kx =0 ,
ke=1
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(5.19) gives -
avo(x,y)
0(x.¥,t) = ¢(x,y) = a % s (x,y) eR, (5.25)

1+8€Ct<T~-1=8§,

Noting (5.15) and (5.16) and the fact that v(0,y,t) 2 0, we conclude from (5.23) that

vix,y,t) vo(x,y) ’

1+8<e€¢<T-1~-§. (5.26)

w

U(X:Y:t) 0’
Since vix,y.t) % vg(x,y) is a solution of the wave equation with (cf. (5.18))
volx,y) = 0, (x,y)eB- {(x,y)]|0 € y < %}

it must in fact be a solution of Laplace’'s equation there. Then we compute

av, 2 v, 2 . 3230 v,
£ [(3;— (x,y)) + (5;— (x,y)) + vo(x,y)(axz (x,y) + ayz (x.y)]]dxdy

f div(vo(x,y)grad vo(x'y))dxdy

R
- - ¥ . 3vo
= £ vo(x,y)grad vo(x,y)'v(x,y)ds = £ vo(l,y) w (»,y)dy . (5.27)

Combining (5.9) and (5.25) with the fact that Yo satisfies Laplace's equation we conclude

from(5.27) that

-~ -

avo 2 3v0 2
f [(5;— (x,y)) + (5;- (x,y)) ]dxdy =0
R
and this, together with (5.18), implies
Vo(Xey) = 0. (5.28)
Combining (5.26) and (5.28) we conclude that
vix,y,t) = 0
- - (x,y) €R, =~® <t (o (5.29)
wix,y,t) 2 Yo

the result for -® < t ¢ ® being an immediate consequence of the result for




1+8<t<T~-1-48. Since this is true for every § > 0 and every s(t) in (5.4),

{5.5), we conclude that a comparable result obtains for V., ¥ in (4.11), (5.2), (5.3). It

follows (since w = constant is a zero state in H and in H) that (cf. (4.9) ff.)

~ ~ ~ ~ - - s -~ ~ -~ -
'('o'vi"o"1"n l(vo,v‘.vo,v1)la 0

and, from the discussion in Section 4, the approximate controllability result follows.
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6. SOME EXACT CONTROLLABILITY RESULTS IN THE CASE OF A CIRCULAR CYLINDER

We consider now the case 2 = Rx (-»,») with

2

R =((x,y) x> + y2 < 1} ,

2

B=23R= ((x,y)lx2 +y =1},

With introduction of the usual polar coordinates r,0, the equations (4.1), (4.2) now

become
Ozv 32v 1 v 1 azv
e S TR I (6.1)
at r r° 39
azw azw 1 dw 1 32w
_2.-_2*_‘3—*—2'—; (6.2)
s ar® TUT % ae
and the boundary conditions (4.3), (4.4) are transformed to
¥ (1,0,t) = au(8,t)
a—t' 9, au(o,t) , (6.3)
3 (1,0,6) = Bu(o,e) . (6.4)
Writing
v k8 -
v(r,0,t) = 2 vk(r,t)e oV TV (6.5)
k=-»
v k8
w(r,0,t) = Z wk(r,t)e T A (6.6)
k==co
T 0
we,e) = I u (ol (6.7)
k==

we arrive at an infinite collection of control problems in the single space dimension, r:

azv azv 9

i
! v, 2
4 X X, 1 k _k
! —= = 4t og—=--—v =0, -wck<w, (6.8)
i 3t2 arz r 3r r2 k
¥
azwk Bzwk 1 3wk k2
-3 = M rar A 0, ek <», (6.9)

t 3r2 r

R e - MY




K e R e e e T S,

avk
TS (1,t) = auk(t), -k Cw , (6.10)

ka
3;* (T,6) = Buk(t), -® (k<> , (6.11)

We will first treat the equation (4.1) with the boundary condition (4.3) which, as we

have seen, reduces to the set of problems (6.8), (6.10), - ¢ k ¢ ®, With

- ®  3v (r,t)
z{r,0,t) = Z zk(r,t)eue = ka Qikb = g! (r,9,¢t)
K= - k= - t t

we have the equivalent first order systems

v (e, t)y Ty(vylr.tly | v (r.t)

t (z (r, t)) ( lkl )(z (r, t)) lel(z (r, t)) (6.12)
where Lix| is the differential operator on the right hand side of (6.8). The boundary
conditions (6.10) become

(6.13)

Z (1,t) = au (t), =<k <o,

The eigenvalues of the operator lel with the corresponding homogeneous boundary

condition

2 (1,t) =0 (6.14)

are

0, ti“lkl,l' L =1,2,3,... ,

where “Ikl g 18 the L-~th positive zero of the Bessel function alk'(r) of order |k}|.
’

The corresponding vector eigenfunctions are

' ~ 1,2,3,...
0 timlkl,t .lkll(x, 2 . 3, :




C®»
(r) =
02,3000 &

- < k
L =1

M) Ate e “rnt 25

The normalization coefficients A|k|'0, Alkl g Aare chosen so that
’

1
[ rle (r)ar = L ]‘ ri¢ ()dar = L, 1=1,2,3 6
o |k|,0 ’ o lk‘ll [ rLgPpoer o ( .16)

Thus
= k + 1 -
Axt,o0 x wCk<w, (6.17)
while, as may be seen from (5], e.q.
w
k], 2
A|k|,l = Ikl (6.18)

N MU ML

The state space in which we wish to work, for the present at least, is (cf. (2.18))
H= {(Z)Iv en'm, z e i(m)
with the inner product

((::), (:g)) = { (Vv1-V;; + zl;;)dxdy

and associated norm. Since the ’lkl L satisfy the homogeneous boundary condition (6.14)
’

one easily sees that

R JRULI
. 0
|( '*'°° )|i =-f ¢|k|'0e1*°A(o|k"oe‘* )axdy
R

3¢ - 2%
+ [ ‘Ikl oeike _.%51;2 e ‘k°de + 151;:;1 {x{ae
R ¢ r 0
= 2|kl(lk} + 1), =w <k <>, (6.19)

while
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where
2
Alkl,l - (u|k|") , @k <w, 2 1,2,3,000 »
.0,0 ~
The state ( 0 ) has zero norm in H. Nevertheless we will not neglect this component.
It v, vV both satisfy the wave equation and (6.3), (4.13) on IR with initial state

(4.5) for v we have (cf. (4.16))

wl,y,t) 2 (x,y,t) dsdt .  (6.21)
B

vle,,T)y (¥l*,*,T) T
((a(.’.'lr))' (;(.’.’T)))i =a {

B=3R
It may be shown that this result is valid for all u for which the solution (in the

generalized sense) v lies in # and varies continuously with respect to t. This class
of controls u is discussed in [19] and is known to include, e.g., u € C([Q,Tltﬂi/z(’)).

If we assume (:) given by the H- convergent series

-»
vie,*,t)y _ 1k
2e,e,¢) Doovy, o020 o7 )+

k==

- ’ Qike ’ eike
11 VL k1.2 s Vo (e ki,
k,L ik@ k,L ix6

: 1 - ’ -
k=== £=1 901,04k, 28 IR MR &

and successively let

~ ik@ ix9®
v(e,s,t) 0|k|'oe 1u'k"‘(t T) ’Ikl,le
= ' @ e | ¢

T(e,0,t) 0 e PIMU

ik8
R 1P el ixi oo

) (6.22)
181,001 ,2°

< =
v12,3,000

1k6] co 3




for T > 0 we arrive at the equations

————————————— ’

T 2% 1) -
2010kl + Vv, (M =a [ [ u(e,e) __l%l_._q (1) o 3*%gpa¢ :
‘ 0o 0 r b

s R e

Ikl o

= 2%a (1 ! u (et , (6.23)

2x iw (T-t) 3¢ -
24 k o7 ([, { u(e,cre 1xlot -'Lali (1) e ¥%30a¢

T iﬂ)'k""('r‘t)

LI
= 2va —! ", E)) {, e u (t)ae , (6.24)

T 2% -iw (T-t) 3¢ -
- - Ix},.2 Ix],2 -1k0
201,07, c{ g u(d,t)e (M e a0ae

= IT e-iwlk"l('r-t) (t)ae
w, . (6.25)
0

M ixl,e

= 2%a Ay

Thus the Dirichlet boundary control problem for (6.8), (6.10) is reduced to a moment
problem (6.23), (6.24), (6.25) for which uk(t) must be a solution. We proceed in much

the same way with the Neumann boundary control problem for (6.9), (6.11). We let

™ 0 ® awk(r,t)

ik ik _ dw
tlr,0,t) = kz_. g (ritle " = kz‘ —Sr— e =3¢ (1.0,0)
and obtain, in place of (6.12),
w (r,t)y _ (0 v lr,t)y o vy lr,t)
(Ck(r &) (H|k| o)(c (r't)) Mlkl(z (rie)) * (6.26)

The boundary conditions are now

ka
T (1,t) = Buk(t), - <k <o,

The eigenvalues of "lkl with the corresponding homogeneous boundary condition




ks

et bty dae ki S R g

v,
k
P (1,t) =0

are, for k = 0,
0, :1vo'l, L =1,2,3,...,
vhere Yot is the f-th zero of the differentiated Bessel function, jb(r), of order
[

0, and, for k * 0,

tiv L =1,2,3,...,

1kl,e’
where Y P is the L=th zero of Ji(r). In the case k = 0 the eigenvalue 0 has double
’
multiplicity. The special solutions taking the place of (6.22) in this case are
w(e,*,t) voo (t - T)Woo
-~ - ’ (6.27)
gle,*,t) 0 000
where 'oo is such that (cf. (6.16))

L 1
£ Ty, dr = 5=, lee. Voo =

In all of the other cases the vector eigenfunctions take the form

0'k| :l(r)

v ~“- <k <o, L=1,2,3,...
el 271k1,2

tiv (r))'

where
~» ¢k (@,

Y, t=1,2,3,i.. ,

Vi, 5 T BT 1 Yk L 0f

the normalization coefficients

Y1kl 8

2.1/2
v Myy,g ~ K ) J|k|(v|k|’l)

Blkl L " (6.28)

selected so that

R
2 1
{ Ty, (1) e = 55

The corresponding special solutions of the homogeneous equation are

-34~

[ 8




B e a2

e TETRVTER T T

4
]
f
!
~ iv (t-1) v, ,eK8 4‘
(!(':'1‘)) =e Ikl,l |k|¢1 ] j
Lle,s,t) ike | *
iv
M ;
!
ik9 ;
-iy - i
i lk(,l(t T) *lkl,le {
e . (6.29)
-iv v eike
Ixl, 27 1kl, 2
As in (6.20) it may be seen that
0| 2
kl,2 )' 2
=2 PR = (v ¥y .
Itivlk|'£¢|k|'! ~ {xi.t ixi,2 lxl,2
Let w satisfy the wave equation and (6.4) with wi(x,y,0) = 0, (x,y,0) =
g% {(x,y,0) =0 in R. We expand (:) in the form
v 0
wie,*, t) 00
= t + t
(C('r°:t)) woo( ) (0 ) :oo( 3(000)
ik® ik6
@ o ¥ e - L e
+ 37 WL T, . + (e ki, .
Ke-® 221 k,L iv v eLkO k,2 -iv v e1k0
Ikl 271k}, Ixl,t¥ x|,
If w satisfies the wave equation and the homogeneous boundary condition (cf. (4.14))
%% (x,y,t) =0, (x,y)eB, t>0,

we find (cf. (4.16), (6.21})) that

B AR 2 ST g Ly

~

~ T
.I ’ .I.l a
(Gl B o [ 1 e F g w60

~

Employing (6.29), (6.3) successively for (s) we arrive at the equations, for

- ¢k ¢, £ =1,2,3,...,
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T 2% iv (T-t) ) i
+ = Ix|,2 -ik8 |
22,2 (T = B g { (e, e)iv,, . e Vixp, et Me asac |
! ¥
‘ T iv (T-t) j
f ———e Ixtl,2 g
S UL { e u (t)at , (6.31)
4
T 2% -iv (T~t)
- = - {xl,2 -1k@
? 2 B£ tf) u(®,e)iv,, e Vip (e ddar
T -iv'k' l(T-t)
= ~20B1v ¥y (D { e u (t)de . (6.32)
We find also, taking (E) in the second form given in (6.27), that
T 2% — B 4
Too!™ =8 { { u(8, )9, a0at = 2xByy, £ ugltrae . (6.33)
Since this must be true for all T and %E woo(t) - :oo(t), we have also

T
woo(T) = 208%g0 [ (T - tiuglelae (6.34)
¢

2
Since “Ikl,l (vlkl,l) , (6.31), (6.32) become

v T 1iv (T-t)
Ix[,t + eI Ixl. 2
raa MU I TP { e u, (t)at
T “Ikl '.(T-t)
ol TIPSR Y £ e u, (t)ae {6.35)
v T -iv {T~t)
ki, - - k1,2 a .
i ! " Blkl,lalkl,l(“lkl,t) { e u, (€) (6.36
Taking account of the fact that
31x1,2

1)
x|t - hod 1.1
ar Y T O LM kLt Tae o gL e)

(6.24) and (6.25) yield
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w I T iw (T-t)
k|t + . k1,2 k1,2
o Yk t'™ T Ay T LAY !’ . u (tlee ,
W aJ T =-iw (T=-t)
'klll - - Iklll |klll
o Ve t™ T A oy CIN ,{ e u, (t)ae .
On the other hand
2.'.!‘.].:2 (1) = A lkl
dr 1x},0
so (6.23) gives
el 1 (1) =a IT (t)a
e 'k,0 Iki,0 3 % t .
Using the formula (6.18) and (6.28) for A|k| L and alkl g e have
’ .
v -
Pt ¢y - Ik],2 T T (yat
"Bi  k,R - 2,172 x
Mgy, m X0
- T - -
LIPE S, ML ot e
*8i k2 ~ . 2.1/2 k
. 4 Wipp,e = X 0
w T iw (T-t)
“(l,! V+ (1) = _1! e Iklll u (£)dt
. k,2 /70 k
@ - T ~-iw (T-t)
el 2 vo o o= [ e el 2 u (t)dt
a x,L 70 k
The equations (6.39) become, in view of (6.17),
R T BPEErYY T
AR TI LTI TR __j_]_/ZkI (e
L{] k,0 /0 “k

This is valid, but meaningless, for k = 0. It ig easy to see that in the case

-3

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

k =0 we




should use

T
1
v (T) = [ u (t)dt . (6.45)
/ a 00 0 k

The equations (6.33) and (6.34) are left as they appear. We note that all of the

coefficients

Yik), e 1 V21K
2 172° ’
o T A
r

, k # 0, 2%8 (6.45)

are bounded away from zero, uniformly with respect to k.

It is also possible to show, using the work {10], (11] of K. D. Graham, that the
numbers

O Vit e Pkt Vi, 2 Ohed, 20 VL3t Qe

are separated by a gap at least equal to %/2 again uniformly with respect to k.
Applying the result [14] of A. E. Ingham along with the work of Duffin and Schaeffer [7],
much as in [12], [2], [3), we conclude the existence of functions wu,(t) in LZ[O,T], for
any fixed T > 4, solving the above moment problems, =% < k < @, Moreover, the result of

Ingham implies as explained in [12], [26], that for each k

T
-2 2 2 2.2
c N < £ fu (e)1%ae < ¢y
where
2 _ 2
N = 20kd k] + Dy (D]
[ ] )
+ 2 - 2
+ lzi Mt Vie, g (T lz‘ Mt eV ()

o
+ 2 2
RETIFL ML SR il

+

k = #1,#2,... . For k = 0 we must add |coo(r)l2 + lwoo(T)lz- Since

T 2% 2 - T P
[ [ lee,e%eae = T [ lu (e)1%ae (6.46)
0 0 k=-» 0
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we see that the above moment problems, equivalent to the control problem, can be solved

with (6.46) finite, provided that

-
X N2<-,

k==

which is the same as saying that the norm of the final state in ﬁ should be finite. We
have, then, the exact controllability result that any ﬁ state may be controlled to any
other a state during a time interval of length T > 4 with the control configuration we
have described here. As discussed in connection with the wave equation in [PF], (GG], one

cannot be sure that the state of the system remains in H for all t e [0,T). However, in

the present case of the Maxwell equations one can show that these states do lie in

H = H"d(l).




7. CONCLUDING REMARKS

The approximate controllability results of Section 5 would appear to be extendable to
domains other than rectanqular ones but the precise method of extension remains to be
worked out. We will indicate some aspects of this problem which are clear from cur current
work.

First of all, the result of Section 5 is almost trivially extended to the case where
control is exercised only on a subset {(w,y)|0 < a<y<b<w}, b>a, of

{{n,y)10 ¢ y < #}. The only change is that the interval 1+ 8 < t< T - 1 -8 appearing

in (5.14) and subsequently must be modified to d + § < t < T - d - § where

@ = inf { sup {[(l - £)2 + (n - Y)2]1/2}} .
aky<b  OKE<Y
[ 14,14 §
If $(v,y,t) = gf (v,y,t) 20 for §<t<T-8 ac<y<b, the Holmgren theorem will
still apply to show that ¢(x,y,t) 20, (x,y) €R, A+ 8 <t <T-~d-28. After that the
remainder of the proof is the same: the same eigenfunctions and frequencies must be dealt
with, the functions sin jy, cos jy are still independent on a < y ¢ b if b > a and
the conditions
;o(x,y) =0, (x,y)eB-~- {(v,y)la <y < b}
av

a_x'o'("'y"°v a<y<b,

still show VO(X.Y) E0 in R.
The first limitation of the method which we have used in Section 5 lies in its
dependence on the construction of ¢(x,y,t) as a linear combination of partial derivatives

of V and w. It is necessary to have a solution of the wave equation to which Holmgren's

theorem may be applied. This part of the proof can still be used for non-rectangular
domains as long as a portion of the boundary on which control is applied is a straight line
segment. Assuming the segment parallel to the y~axis, one can construct ¢ by the formula

(5.8) again and show that ¢ and %% both vanish on the straight line segment in

1
o

question, allowing subsequent application of the Holmgren theorem to show ¢(x,y,t) =




e A I A

for (x,y) @€ R and t 4in some interval d + 8§ € t < T - 3 - §, with d depending on the
geometry of R. But then we are faced with a second limitation.

The second limitation of the method which we have used lies in its reliance on the
specific form of the eigenfunctions and frequencies to pass from ¢(x,y,t) £ 0 to the
conclusion that both ;(x,y,t) and ;(x,y,t) are likewise identically zero. It needs to
be emphasized that no local analysis will suffice here. 1In the one dimensional case (see

our remarks at the end of Section 3) if the control problem is stated for boundary

conditions
vio,6) = 0, $ (1,£) = au(e) (7.1
dw aw -
3% (o,t) = 0, '5-; (1,¢) Bu(t) (7.2)

the ;. w constructed as in Section 4 will satisfy the wave equation and

~

3(0,¢) = 0, g{ (1,8) =0, (7.3)
- .
:—: (0,0 =0, FH 0,0 =0, (7.4)
a2 (1,00 +8 2 (1,0) 2 g(1,8) = 0 (7.5)
T (1) + B 55 (Le) = 401, :

Here if we take v to be a non-zero solution of the wave equation satisfying (7.4) and
take

Yoot = -8 1 B eya
vix,t ag 3%

we clearly have v(o,e) = o0,

~ 1 o2~
W e =B XY e
at a0 2

1 2~ -~ ~

--’ a' -g 3—'- —a' -
;I — (&,0)88 = & (57 (0,t) 3% (1)) =0,
Y3
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2~ X .3
’—% (x,t) = = %] ¥ (g,erat
at 0 at .
k 2~ 2~
-8 AN o83 = v
;g aca;’ (E,t)aE 3 3C5% (x,t) ;x—z' (x,t)
so that v satisfies the wave equation and, clearly, (7.5) is also satisfied. Thus the

wave equation with (7.1), (7.2) is not approximately controllable; ¢(x,t) =

a g¥ (x,t) + 8 %E (x,t) £ 0 byt this does not imply that ¥ or W are identically equal
to zero. The additional condition which makes this work in (3.7) ff. is the fact that one
can show there that ~ -

] -ag%(o,c)#sg%(o,c)-o.

It seems likely that the question of whether or not ¢ = 0 implies that both ; and ;;

equivalently v and ;0 are both zero must eventually reduce to a boundary value problem

of an as yet unidentified type.

At the present writing there is only one, rather curious, result which we can offer
which yields approximate controllability for a domain R of rather general shape. We
suppose that the "control boundary” B, B = 3R 1includes two nonparallel line segments,

l1 and 12, with unit exterior normals v, and vy, Proceeding as before we can show,

applying the Holmgren theorem together with

e L GV e W g g, A, e D gl A

s

v
; vl 0 on Ly, 2,

» , 0, i1 =1,2 on L,, 2,, respectively,
3vi 1 2
y
v dw
a 3o~ +8 T 0, 1i=1,2 on 11, 12 respectively,
1
that both .
v w .
.1-°§'\T;+85E' (7-6)

-d2-
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3 3
2

must vanish identically in R for d+ 8 <t <T~d-86, §>0 arbitrary, a4 > 0

depending on the geometry of R and B, the location of 11 and 12 within B, etc.
But then both ¢1 and 02 must vanish on 11 (say) for these values of t. Subtracting

(7.6) from (7.7) we see that
v v
u(i%: B 3%’] =0 on &, x [@a+§, T-4d-=34)

This shows, since 21 and 12 are not parallel, that a nontangential derivative of v

vanishes on £, x [d + §, T-43-48]. Combining this with %{ =0 on l1 and applying

~

the Holmgren theorem to ; alone, much as in (5], [13], we are able to conclude Vv = O,
provided T is appropriately large. Then one easily has the same - 21t for ; and
approximate controllability follows.

This result gives approximate controllability for R equal to the interior of any
closed polyhedron in RZ with control on at least two sides.

Further inspection of this argqument shows that only 12 needs to be assumed to be a
line segment. That is needed in order to identify 02 as a solution of the wave
equation. We may then take 21 to be any smooth portion of By which is never parallel
to £1 and achieve the same result.

Finally, let us indicate that we are very much aware of the limitations, from the
point of view of actual implementation, of the control configuration discussed in this
paper. In principle, at least, the boundary conditions (1.7), (1.8), along with the
further "single layer" condition discussed in connection with Figure 3.1, could be achieved

with conducting bars attached to terminals as shown in Figure 3.
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Figure 3. Conducting Bar and Busses

The perfectly conducting busses perpendicular to the boundary of { ensure that the normal
component of E, Ev' is zero just outside R, provided that no net change is allowed to
accumulate at the boundary of I, i.e., in the conducting bar. Thus the potentials at

€ and D must be regulated so that the potential difference C - D ensures the correct
controlling current through the surface bar B while C + D is set so that there is no
accumulation of charge at the bounding surface.

We have not considered any effects of propagation delays in the controlling circuits -
i.e., we have not assumed that thesge are distributed parameter systems. This assumption,
and evident limitations on the speed with which prescribed currents can be computed and
established in the controlling circuits together with sensing limitations, place admittedly
severe limitations on what can be done "open loop”. It is likely that the eventual
significance of our results will be most evident in connection with closed loop behavior
wherein time varying macetic fields [ near the boundary of £ induce currents in the
bars B which, being resistive, will then act as energy dissipators. We hope to discuss

this topic in later work.
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Another control configuration may be obtained by supposing the boundary of § to be a
perfectly conducting sheet of material to which electromagnets are attached in a dense

array as shown in Figure 4.

Figure 4. Electromagnet Array

If J denotes the current through the windings of the electromagnets, then we shall have

E =0
T

and
Hv = qJ

where a is dependent on the electromagnet’s configuration. The theory in this case will

take much the same form as the one discussed in this paper.




Cermmen w e -

ot

(1
{2}

[3]
(4]

{5]

(e}

7]

(8}

{9}

[10])

(1]

[12]

[13)

(14}

—— e e e

REFERENCES

Adams, R. A., "Sobolev Spaces®, Academic Press, New York, 1975.
Chen, G., Control and stabilization for the wave equation in a bounded domain, SIAM
Journal on Control and Optimjization.

, Part II, Tbid. 19 (1981), 114-122,
Clemmow, P., "An Introduction to Electromagnetic Theory", Cambridge Univ. Press,
1973,
Courant, R. and D. Hilbert, "Methods of Mathematical Physics, II: Partial
Differential Equations™, Interscience Pub. Co., New York, 1962.
Dolecki, S. and D. L. Russell, A general theory of observation and control, SIAM J.
on Control and Optimization 15 (1977), 185-220.
Duffin, R. J. and A. C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer.
Math. Soc., 72 (1952), 341-366.
Fattorini, H. O., Control in finite time of differential equations in Banach space,
Comm. Pure RAppl. Math., 19 (1966), 17-34.
Friedrichs, K. O., "Mathematical Methods of Electromagnetic Theory”, Lectures,
1972-73, pub. by Courant Institute of Mathematical Sciences, New York University,
1974,
Graham, X, D., On boundary value control distributed hyperbolic systems, Department
of Mathematics, University of Minnesota, March 1973,
Graham, K. D., Separation of eigenvalues of the wave equation for the unit ball in
"N, Studies in Applied Mathematics, Vol. LII (1973), 329-343.
Graham, K. D. and D. L. Russell, Boundary value control of the wave equation in a
spherical region, SIAM J. on Control and Optimization 13 (1975), 174-196.
Hormander, L., "Linear Partial Differential Operators™, Springer-Verlag, Heidelberg,
Berlin, 1963.
Ingham, A. E., Some trigonometrical inequalities with applications to the theory of

geries, Math. Zeitschr. 41 (1936), 367-379.

46~




[15]

[16)

{17]

[18]

[19]

{20]

[21}

[22]

[23]

[24)

[25}

[26]

Lagnese, J., Boundary value control of a class of hyperholic eguations in a general
region; SIAM Journal on Control and Optimization 15 (1977), 973-983.

+ Exact boundary value controllability of a class of hyperbolic equations,

Ibid. 16 (1978), 1000-1017,

Levinson, N., “Gap and Density theorems”, Amer. Math. Soc. Colloq. Publ., Vol. 26,
American Math. Soc., Providence, 1940,

Lions, J. L., "Optimal Control of Systems Governed by Partial Differential
Equations”, Springer-vVerlag, New York-Heidelberg-Berlin, 1973, trans. by S. X.
Mitter.

Lions, J. L. and E. Magenes, "Problémes aux limites non-honoqgnes', Vol. I and II,
Dunod, Paria 1968.

Russell, D. L., On boundary~value controllability of linear symmetric hyperbolic
gsystems, in "Mathematical Theory of Control®, A. Balakrishnan and L. Neustadt, Eds.,
Academic Press, New York, 1967.

Russell, D. L., Nonharmonic Fourier series on the control theory of distributed
parameter systems, J. Math. Anal. Appl. 18 (1967), 542-559.

Pussell, D. L., Boundary value control theory of the higher dimensional wave
equation, SIAM Journal on Control and Optimization 9 (1971), 29-42.

, Part II, Ibid., 401-419,

Russell, D. L., Control theory of hyperbolic equations related to certain questions
in harmonic analysis and spectral theory, J. Math. Anal. and Appl. 40 (1972),
336-368.

Russell, D. L., Exact boundary value controllability theorems for wave and ehat
processes in star~complemented regions, in "Differential Games and Control Theory,
Roxin, Liu and Sternberg, Eds., Marcel Dekker, New York, 1974,

Russell, D. L., Controllability and stabilizability theory for linear partial
differential equations: recent progressand open questions, SIAM Review 20 (1978),

639~739,

47~

PRI v S N S [ rote. oo Torm iy




“—h

{27] Schwartz, L., "Etude des sommes d'exponentielleg”, deuxieme edition, Hermann, Paris,

1959.

(28] Tixhonov, A. N. and A. A. Samarskii, "Equations of Mathematical Physics®, Trans. by
A. R. M. Robson and P. Basa, Ed. by D. M. Brink; The Mac M{llan Co., New York, 1963.

{29]) wang, P. X. C., Optimal control of a class of linear symmetric hyperbolic systems
with applications to plasma confinement, J. Math. Anal. Appl. 28 (1969), 594-608.

{30] wang, P. X. C, and W. A. Janos, A control-theoretic approach to the plasma
confinement problem, J. Opt. Th. and Appl. 5 (1970), 313-329,

[31] Wwang, P. X. C., Feedback stabilization of highly conducting plasmas, Physical Review
Letters 24 (1970), 362-364.

{32] wWilcox, C. H., Wave operators and asymptotic scolutions of wave propagation problems
of classical physics, Arch. Rat. Mech. Anal. 22 (1966), 37-78.

{33] wWilcox, C. H., Steady-state wave propagation in homogeneous anisotropic media, Arch.

' Rat. Mech. Anal. 25 (1967), 201-242.

{34] Wilcox, C. H., Transient wave propagation in homogeneous anisotropic media, Arch.

Rat. Mech. Anal. 37 (1970), 323-343, :

DR/ed

-48~




SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

READ INSTRUCTIONS i
REPORT DOCUMENTATION PAGE pEriEAD INSTRUCTIONS _
T REPORT NUMBER — 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER n
i 2614 A0 4037 93] '
4. TITLE (and Subtitle) : 8. TYPE OF REPORT & PERIOD COVERED
' THE DIRICHLET-NEUMANN BOUNDARY CONTROL PROBLEM Summary Report - no speCIﬁc &
reporting period

ASSOCIATED WITH MAXWELL'S EQUATIONS IN A
CYLINDRICAL REGION

6. PERFORMING ORG. REPORT NUMBER

{7. AauTHOR(®) 8. CONTRACT OR GRANT NUMBER(s;
D. L. Russell DAAG29-80-C-0041
AFOSR-79-0018 2
Is. PERFORMING ORGANIZATION NAME AND Abbﬂi“ 0. ::ggk.nvlotnl.xﬁﬁsr{l’."zkuo.fgsf. TASK E
Mathematics Research Center, University of

Work Unit Number 5 -

o 610 Walnut Street Wisconsin optimization and
; Madison, Wisconsin 53706 Large Scale Systems
; 11. CONTROLLING OF PICE NAME AND ADORESS 12. REPORT DATE ;
December 1983 ¢
(See Item 18 below) 13. NUMBER OF FAGES !
48 H
[T oNITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | 15. SECURITY CLASS. (of this report)
j
UNCLASSIFIED

[8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of s ReporD)
Approved for public release; distribution uniimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 30, if different from Report)

18. SUPPLEMENTARY NOTES

U. S. Army Research Office Air Force Office of
P. O. Box 12211 Scientific Research
Research Triangle Park Washington, DC 20332

North Carolina 27709
19. KEY WORDS (Continue on revecse eide if necessary and identify by block number)

Hyperbolic PDE, Control, Boundary Value Control, Distributed Parameter
Systems, Maxwell Equations, Electromagnetic Equations

20. ABSTRACT (Continue an reverse side If necessary and identily by block number)

In a cylindrical region we consider electromagnetic fields independent of
* the axial coordinate: controlling the time evolution of such fields by means
of boundary currents, likewise independent of the axial direction, is
equivalent to controlling, simultaneously, two wave equations; one with
boundary control of Dirichlet type, the other of Neumann type. In this paper
we provide a preliminary study of control problems of this type and indicate
what is necessary for extensions of our work.

DD ,an'ys 1473  =orTion oF 1 NOV 818 OBsOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




